BME504 –MATHEMATICAL AND COMPUTATIONAL METHODS IN BIOMECHANICS OF HUMAN SKELETAL SYSTEMS

BIOMEDICAL ENGINEEERING

5 I S I LAIS				Credit Structur	2		
Semester	Lecture	Practice		Laboratory	National Credits	ECTS	
1	4	-		-	3	10	
Level of Course	MSc. program		Lan	guage	English		
Type of Course	ELECTIVE		Moo	le of Delivery	Face to Face		
Prerequisites	BACKGROUND IN ENGINEERING AND MATHEMATICS						
Catalog Description	Biomechanics of the	ne human skel	leton a	and the problem of	alloarthroplasty, intr	oduction to the	
I I I	anatomy of the skeletal system, total replacement of human joints, mathematical models of						
	biomechanics, background of biomechanics, mathematical models of particular parts of the						
	human skeleton and joints and their replacements based on boundary value problem analyses,						
	biomechanical ana	lyses of partic	cular p	parts of the human s	keleton, joints, and th	neir replacements,	
	biomechanical mo	dels based on	conta	ct problems and bio	mechanical analyses	of some human	
	joints, their total replacements, and some other parts of the human skeleton.						
Course Objectives	1. Introducing th	e concept of b	of biomechanics of the human skeleton.				
	2. Introducing the 3 . Introducing the	e concept of a	inator he tot	al replacement of h	stem.		
	4. Introducing th	e concept of t	he ma	thematical models	of biomechanics,		
	5. Introducing th	e concept of t	he ma	thematical models	of particular parts of	the human skeleton	
	and joints and	their replacer	nents	based on boundary	value problem analy	ses.	
	biomechanica	l problems.	ne ma	unematical analyses	s and numerical solut.		
	7. Introducing th	e concept of t	he bio	mechanical analyse	es of particular parts	of the human	
	skeleton, joint	s, and their re	place	nents, biomechanic	al models based on c	ontact problems	
	and biomecha	nical analyses man skeleton	s of so	me human joints, th	ieir total replacement	s, and some other	
Course Outcomes	1. Understat	nding the cond	cept o	f the biomechanics	of the human skeleto	n.	
	2. Understan	nding the anat	omy o	of the skeletal system	n.		
	3. Understan	nding the cond	cept of	f the total replacement	ent of human joints.		
	 4. Building mathematical models of biomechanics. 5. Building the mathematical models of particular parts of the human shelpton and inist. 						
	and their replacements based on boundary value problem analyses.						
	6. Understanding the mathematical analyses and numerical solutions of fundamental						
	biomechanical problems.						
	/. Understanding the concept of the biomechanical analyses of particular parts of the human skeleton, joints, and their replacements, biomechanical models based on contact						
	problems and biomechanical analyses of some human joints, their total replacements,						
	and some other parts of the human skeleton.						
Course Category by Content	Mathematics and Basic Science		<u>s</u>		0		
(70)	Engineering					0	
	Engineering Design 0			0			
Textbook and /or References	1 Jirí Nedo	<i>u</i> na Jirí Stablí	k Iva	n Hlavácak Tosaf F) anak Tatiana Dostál	U	
Textbook and /or References	Cková, ".	Mathematical	And \mathbf{N}	Computational Met	Methods In Biomechanics Of Human		
	2. Y.C. Fun	g, "Biomecha	', John Wiley & Sons, Inc nechanics. Mechanical Properties of Living Tissues", Springer-Verlag,				
	3 . Duane Kt	1995, New York, 2nd edition. 3 Duane Knudson "Fundamentals of Riomechanics" 2 nd edition Springer 2007					
	4. Ozkaya a Deformat	nd Nordin, "F ion".	", "Fundamentals of Biomechanics: Equilibrium, Motion, and				
	 G.A. Holzapfel, R.W. Ogden (eds.): "Mechanics of Biological Tissue", Springer-Verlag, 2006, Heidelberg. 						
	6. J.D. Humphrey, S.L. Delange, "An Introduction to Biomechanics, Solids and Fluids, Analysis and Design", Springer-Verlag, 2004, New York.						
Assessment Criteria		ζ,	. · ·		Quantity	Percentage	
	Attendance				2	10	
	Quiz						
	Homework				1	15	

	Project		1	15	
	Term Paper				
	Laboratory Work				
	Other	Other			
	Midterm Exams	1	20		
	Final Exam	1	40		
Student Workload	Activities	Quantity	Duration (hour)	Total Workload	
	Course duration in class (including Exam weeks)	15	4	60	
	Labs and Tutorials				
	Homework	4	2	8	
	Project/Presentation/Report	1	102	102	
	E-learning activities				
	Quizzes				
	Midterm Examination Study	1	6	6	
	Final Examination Study	1	12	12	
	Self Study	16	7	112	
	Total Workload (hours)	300			
	Total Workload / 30 (hours)	10			
	ECTS Credit of the Course	10			

Course Plan				
Week	Topics			
1	Biomechanics of the human skeleton and the problem of alloarthroplasty.			
2	Introduction to the anatomy of the skeletal system.			
3	Total replacement of human joints.			
4	Background of biomechanics.			
5	Mathematical models of particular parts of the human skeleton and joints and their replacements based on boundary value problem analyses.			
6	Mathematical models of particular parts of the human skeleton and joints and their replacements based on boundary value problem analyses.			
7	Mathematical analyses and numerical solutions of fundamental biomechanical problems.			
8	Mid Term			
9	Mathematical analyses and numerical solutions of fundamental biomechanical problems.			
10	Biomechanical analyses of particular parts of the human skeleton, joints, and their replacements.			
11	Biomechanical analyses of particular parts of the human skeleton, joints, and their replacements.			
12	Biomechanical models based on contact problems and biomechanical analyses of some human joints, their total			
	replacements, and some other parts of the human skeleton.			
13	Biomechanical models based on contact problems and biomechanical analyses of some human joints, their total			
	replacements, and some other parts of the human skeleton.			
14	Biomechanical models based on contact problems and biomechanical analyses of some human joints, their total			
17	replacements, and some other parts of the human skeleton.			
15	Final Exam			

Relationship between the Course and Program Learning Outcomes			
Prog	ram Outcomes	С	
i.	Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied knowledge in these areas in complex engineering problems.	4	
ii.	Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.	4	
iii.	Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose.	4	
iv.	Ability to devise, select, and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively.	4	
v.	Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions.	4	
vi.	Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability towork individually.	4	
vii.	Ability to communicate effectively in Turkish, both orally and in writing; knowledge of a minimum of one foreign		
	language; ability to write effective reports and comprehend written reports, prepare design and production reports,	4	
	make effective presentations, and give and receive clear and intelligible instructions.		
viii.	Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.	5	

ix.	Consciousness to behave according to ethical principles and professional and ethical responsibility; knowledge on	1
	standards used in engineering practice.	-
X.	Knowledge about business life practices such as project management, risk management, and change management;	4
	awareness in entrepreneurship, innovation; knowledge aboutsustainable development.	4
xi.	Knowledge about the global and social effects of engineering practices on health, environment, and safety, and	
	contemporary issues of the century reflected into the fieldof engineering; awareness of the legal consequences of	4
	engineering solutions.	
C (Co	ontribution of the course): 1: None 2: Weak, 3: Medium, 4: Strong, 5: Very Strong	

Prepared by: Assoc. Prof. Dr. Fa'eq Radwan

Date : 03.07.2016