BSc. program, Biomedical Engineering Department

Course Unit Title	Summer Training I
Course Unit Code	BME200
Type of Course Unit	Compulsory
Level of Course Unit	2 nd year BSc program
National Credits	0
Number of ECTS Credits Allocated	12
Theoretical (hour/week)	-
Practice (hour/week)	40
Laboratory (hour/week)	-
Year of Study	2
Semester when the course unit is delivered	4
Course Coordinator	Assist. Prof. Dr. Dilber Uzun Özşahin / Assist. Prof. Dr. Melis Özdenefe
Name of Lecturer (s)	Assist. Prof. Dr. Dilber Uzun Özşahin / Assist. Prof. Dr. Melis Özdenefe
Name of Assistant (s)	-
Mode of Delivery	Working Area (Practice)
Language of Instruction	English
Prerequisites	-
Recommended Optional Program Components	-

Course description: This course is the first of two summer practices that each student is required to complete. The main aim of the course is to give job experience for the students. Provide vision to the student about the practical applications of biomedical engineering knowledge.

Objectives of the Course: The goal of this course is to familiarize students with the daily work of Biomedical Engineers.

Learning Outcomes

At th	ne end of the course the student should be able to	Assessment
1	Provide vision to the student about the practical applications of biomedical engineering knowledge.	3

Assessment Methods: 1. Written Exam, 2. Assignment, 3. Project/Report, 4. Presentation, 5. Lab. Work

Course's Contribution to Program

		CL
1	Apply knowledge of mathematics, natural science with relevant to life science and multidisciplinary context of engineering science.	5
2	Analyse, design and conduct experiments, as well as to analyse and interpret data.	5
3	Design a system, component or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability and sustainability.	5
4	Ability to work with multi-disciplinary engineering sciences.	4
5	Control in design work, by using simulation, modelling and test and integration in a problem solving oriented way.	3
6	Display an understanding of professional and ethical responsibility.	5
7	Communicate effectively aware of the non-technical effects of engineering.	3
8	Search technical literature and other information sources.	5
9	Recognize of the need for, and an ability to engage in life-long learning.	4
10	Exhibit knowledge of contemporary issues.	4
11	Use the techniques, skills and modern engineering tools necessary for engineering practice to develop marketable products for the global market.	5

CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)

Course Contents

Week	Chapter	Topics	Exam
1		Summer Training	
2		Summer Training	
3		Summer Training	
4		Summer Training	

Recommended Sources

Textbook: None

Assessment

Final Report	100 %
--------------	-------

Assessment Criteria Final grades are determined according to the Near East University Academic Regulations for Undergraduate Studies

Course Policies Attendance to the course is mandatory.

ECTS allocated based on Student Workload

Activities	Number	Duration (hour)	Total Workload(hour)
Course duration in class (including Exam weeks)			
Labs and Tutorials	-	-	-
Assignment	-	-	-
Project/Presentation/Report	1	10	10
E-learning activities	-	1	-
Quizzes		-	
Midterm Examination			
Final Examination		_	
Self-Study	30 working days	350	350
Total Workload	360		
Total Workload/30(h)	12		
ECTS Credit of the Course	12		