SOFTWARE ENGINEERING DEPARTMENT

Course Catalogue

2015-2016
CONTENTS

- General Information about the Department of Software Engineering 4
- Official length of programme 4
- Mode of study 4
- Profile of the Programme and Method of Education 4
- Qualification Awarded 5
- Level of Qualification 5
- Access requirement(s) 5
- Qualification Requirements 5
- Converting US College Credit Hours (semester credit hours-SCH) to ECTS 5
- Arrangements for transfer from another Software Engineering Department (Recognition of Prior Learning) 6
- Examination Regulations, Assessment and Grading 6
- Grading Scheme and Grades 7
- Occupational Profiles of Graduates 8
- Programme Director 8
- Key learning outcomes 8
- Courses list with Near East University credits and ECTS 9
- Course objectives and contents 9
- Year 1 9
- Year 2 13
- Year 3 17
- Year 4 20
- Sample Copy of Diploma Supplement 25
- Information on the Contents and Results Gained 26
- Additional Information 26
- ECTS credits for each semester 27
- Information on the National Higher Educational System 28
- General Structure of the North Cyprus Educational system 29
This course catalogue is developed to give information about the software engineering department and its programme to future students, parents, academics, universities and institutions who are interested in the Near East University,

The catalogue includes key information about the duration of the programme, mode of study, course description, credit and grading system etc. of the programme.

It is expected that necessary information could be found in this catalogue which will answer questions about the Department of Software Engineering and the course programme.

Sincerely

Asst. Prof. Dr. Yoney Kirsal Ever
Deputy Chairman
SOFTWARE ENGINEERING (SE) Programme

General Information about the Department of Software Engineering

Near East University, Department of Software Engineering was founded in 2013. The undergraduate program started in 2013-2014 Fall Term. The medium of instruction is English.

The aim of the Department is to provide a strong background in the theories and practices of Software Engineering, and to graduate engineers with up-to-date knowledge and information regarding science and engineering.

Undergraduate students are studying a wide array of subjects, including software engineering principles, software construction, software design and architecture, programming languages, communication, database management systems, data structure and algorithms, artificial intelligence. The students are exposed to the broad spectrum of computer engineering and information systems engineering courses as well.

Our students are supplied with the knowledge and skills needed for high quality engineering work and to improve their ability and skills with a broad intellectual spectrum so that they will be ready for diverse and competitive career paths.

Official length of programme: 4 years (excluding one year of English preparatory class for English programme), 2 semesters per year, 14 weeks per semester

Mode of study: Full time

Profile of the Programme and Method of Education

Lectures by instructors/academics, class discussions, individual projects, oral and written examinations are implemented as the method of education. The curriculum is planned with a multidisciplinary approach. The curriculum is divided into two sections. The first section covers three years which are required courses and the second one is fourth year which covers elective courses. During the first year, the students are studying the basic engineering courses to be prepared for the departmental courses. In second and third year, the students are taking the courses which are the basics of the departmental courses.
especially in computing and programming points of view. The last year students are allowed to take software engineering related courses, the students are given the opportunity to elect the courses in accordance with their academic interests.

Qualification Awarded

Bachelor of Science degree in Software Engineering

Level of Qualification

Qualifications Framework- European Higher Education Area (QF-EHEA): 1

Access requirement(s)

High School Diploma. Admission of Turkish nationals is by Placement through anation-wide Student Selection Examination (ÖSS) administered by Assessment,Selection and Placement Centre (ÖSYM). Admissions of Turkish Cypriots is based on the Near East University Entrance and Placement exam. Admission of international students is based on their high school credentials. Proof of English Language proficiency is also required.

Qualification Requirements

139 Near East University Credits (Near East University Credit is contact hour based) which is total 239 ECTS credits must be completed after being successful in the courses to become a graduate of the software engineering department.

ECTS is a credit system designed to make it easier for students to move between different countries. Since they are based on the learning achievements and workload of a course, a student can transfer their ECTS credits from one university to another so they are added up to contribute to an individual's degree programme or training. ECTS helps to make learning more student-centred. It is a central tool in the Bologna Process, which aims to make national systems more compatible.

ECTS also helps with the planning, delivery and evaluation of study programmes, and makes them more transparent (http://ec.europa.eu/education/ects/ects_en.htm).

Converting US College Credit Hours (semester credit hours-SCH) to ECTS

ECTS is the most commonly used credit system in Europe. The major difference between the European Credit System ECTS and the US College Credit system is that the first is based on student workload and the second on contact hours. The ECTS is oriented towards the time required for a student to meet the intended study outcomes, while the U.S. system is more oriented towards the time a faculty member needs to teach.
Here is an example of conversion of credits from ECTS to Semester Credit Hours for a college or university in the U.S.: 1.67 ECTS = 1.00 US College Credit Hours

Conversion standards may vary between higher education institutions in the U.S. (http://www.mastersportal.eu/articles/1110/what-you-need-to-know-about-academic-credit-systems-in-the-us.html)

A student is required to have minimum pass grade from each course and obtain minimum 2.00/4.00 cumulative Grade point Average (cumulative GPA).

The students who have successfully completed the programme should be able to be science-based, skilled and competent software engineers prepared to meet the challenges of practicing software engineering in the 21st century.

Arrangements for transfer from another software engineering department (Recognition of Prior Learning)

A student wishing a transfer from another university: the student must prove her/his English Proficiency if s/he wishes to attend the English Section. At the time of OSS examination the candidate's entrance score must not be less than the lowest score for admission to the Near East Software Engineering Department. The transcript and course content of the applicant is examined by the department and the student is then accepted to the appropriate year of the programme.

For further details please contact:

Faculty of Engineering

Department of Software Engineering, 3rd Floor

Near East Boulevard, P.O. Box 92202

Nicosia, TRNC via Mersin 10-Turkey

Phone: +90 (392) 223 64 64

E-mail: info@neu.edu.tr

Examination Regulations, Assessment and Grading

In four years of the software engineering, students are evaluated by unseen examinations which include software code writing, essay questions, MCQ (multiple choice questions) exams, assignments, presentations and both class and individual participations.
Students must successfully complete two main exams: the mid-term and the final examinations for each course. If the student fails in any course, s/he is entitled to do resit examinations.

Grading Scheme and Grades

<table>
<thead>
<tr>
<th>PERCENTAGE</th>
<th>COURSE GRADE</th>
<th>GRADE POINTS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-100</td>
<td>AA</td>
<td>4.00</td>
<td>(Excellent)</td>
</tr>
<tr>
<td>85-89</td>
<td>BA</td>
<td>3.30-3.95</td>
<td>(Excellent)</td>
</tr>
<tr>
<td>80-84</td>
<td>BB</td>
<td>3.00-3.45</td>
<td>(Very Good)</td>
</tr>
<tr>
<td>75-79</td>
<td>CB</td>
<td>2.50-2.95</td>
<td>(Very Good)</td>
</tr>
<tr>
<td>70-74</td>
<td>CC</td>
<td>2.00-2.45</td>
<td>(Good)</td>
</tr>
<tr>
<td>65-69</td>
<td>DC</td>
<td>1.50-1.90</td>
<td>(Good)</td>
</tr>
<tr>
<td>60-64</td>
<td>DD</td>
<td>1.00-1.40</td>
<td>(Good)</td>
</tr>
<tr>
<td>50-59</td>
<td>FD</td>
<td>0.50-0.90</td>
<td>(Failed)</td>
</tr>
<tr>
<td>0-49</td>
<td>FF</td>
<td>0.00</td>
<td>(Failed)</td>
</tr>
</tbody>
</table>
Occupational Profiles of Graduates

The mission of the Near East University Software Engineering is to educate engineers that meet the needs of society within the world standards also pursues scientific cooperation with national and international entities in academia, public and private sectors. Moreover, they may apply for graduate programs to become specialist in a related area.

Graduates may find employment in both state and private organizations, educational institutions and self-employment.

Programme Director

Asst. Prof. Dr. Yoney Kirsal Ever (Deputy Chairman)

Phone: +90 (392) 223 64 64

E-mail: yoney.kirsalever@neu.edu.tr

Key Learning Outcomes

The student who successfully completes the program should be able to

1. understand and apply knowledge of mathematics, science, and engineering.

2. analyze a problem, identify and define the computing requirements appropriate to its solution.

3. apply mathematical foundations, algorithmic principles, and software engineering techniques in the modelling and design of computer-based systems.

4. design a system, a programming language or human computer interaction application, component, or process to meet desired needs within realistic constraints such as economic, environmental, social aspects.

5. planning and carrying out experiments, as well as to analyze and interpret data.

6. use the techniques, skills and modern engineering tools necessary for engineering practice.

7. understand professional, ethical, legal, security and social issues and responsibilities that apply to engineering.

8. work productively in a multidisciplinary team, in particular to carry out projects.

9. communicate effectively with a range of audiences

10. have a recognition of the need for, and an ability to engage in life-long learning.
Courses List with Near East University credits and ECTS

Please see the attached example of the diploma supplement which is given to all graduates of our university free of charge. It is arranged in English.

The diploma supplement is a document the purpose of which is to provide sufficient independent data to improve the international “transparency” and fair academic and professional recognition of qualifications (diplomas, degrees, certificates, etc.). It is designed to provide a description of the nature, level, context, content and the status of the studies that were pursued and successfully completed by the individual named on the original qualification to which this supplement is appended. It should be free from any value judgments, equivalence statements or suggestions about recognition.

OBJECTIVES AND CONTENTS OF THE COURSES:

YEAR 1

Programming and Problem Solving (course type: required; course code: CS122)

Course objective: The aim of this course to provide an introduction to fundamental concepts of programming.

Course content: This course provides an use of built-in data structures in solving problems using the Python general-purpose programming language. In this course, students study how write user-defined functions using iteration as well as recursion. This course also stresses the importance of programming tools such as programming editors and debuggers. The students are expected to work within a GNU/Linux environment. The course provides a basic introduction into object-oriented programming.

General Chemistry (course type: required; course code: CHEM101)

Course objective: The aim of this course is to provide the basic concepts of chemistry and main elements of its content.

English I (course type: required; course code: ENG101)

Course objective: This course aims at enabling students to understand their lessons and to express themselves in English.

Course content: This course offers intermediate levels include wide range of grammatical structures and vocabulary of English in order to build onto the foundation established at the Preparatory School. This course aims to bring the students to a level that will enable them fulfill the requirements of main courses of their departments. Students will be encouraged to read a variety of texts as well as chapters from textbooks so that they can pursue their undergraduate studies at the university without major difficulty. ENG 101 is designed to improve the students’ presentation ability. Students are expected to do an oral presentation. At the end of the course they submitted their written projects.

Calculus I (course type: required; course code: MAT101)

Course objective: The primary aims of the course are to help students develop new problem solving and critical reasoning skills and to prepare them for further study in mathematics, the physical sciences, or engineering.

General Physics I (course type: required; course code: PHY101)

Course objective: The goal of physics is to understand how things work from first principles.

Linear Algebra (course type: required; course code: MAT111)

Course objective: This course aims to teach Systems of linear equations and Matrices.

Object Oriented Programming (course type: required; course code: CS132)

Course objective: This course provides an in-depth discussion of object-oriented programming and how object oriented programming can be used in solving real-life problems.

Course content: This course requires a more advanced use of programming tools (mainly editors and debuggers) that were introduced in CS162 (Programming and Problem Solving). This course uses Python 3 to teach the fundamental concepts of object-oriented programming. The students are expected to work within a GNU/Linux environment. The course builds upon the knowledge of CS122 and CS221 and is the third course in line that uses Python as programming language. The students who wish to take this course are expected to have a good understanding of basic Python programming, data structures and algorithms.

Calculus II (course type: required; course code: MAT102)

Course objective: The aim of this course is to offer the basic fundamentals of needs to apply the principles of mathematical logic, and to use proof techniques such as induction, and to reason about the efficiency of an algorithm.

Discrete Mathematics (course type: required; course code: MAT122)

Course objective: The aim of this course is to offer the basic fundamentals of needs to apply the principles of mathematical logic, and to use proof techniques such as induction, and to reason about the efficiency of an algorithm.

English II (course type: required; course code: ENG102)

Course objective: This course aims to bring the students to a level that will enable them to fulfil the requirement so the main courses of the departments...

Course content: This course offers the students a wide range of grammatical structures and key language and vocabulary of English in the technical, industrial, and scientific sectors at intermediate level for everyday communication at work. The ability to evaluate, analyze and synthesize information in written discourse will be highlighted. Documentation in writing will be introduced at the beginning of the course, in order to solidly establish the skill by the end. Students will learn the discourse patterns and structures to be used in different essay types that they need for real life, hands-on tasks like explaining process, organizing schedules, reporting or progress, or analyzing risk.

General Physics II (course type: required; course code: PHY102)

Course objective: This course aims to bring the students to a level that will enable them to understand how things work from electrical point of view.

Atatürk İlke ve İnkılap Tarihi (course type: required; course code: AIT101)

Course objective: This course is designed exclusively for Turkish national and Turkish Cypriot students. The aim is to provide the principles of Atatürk analytically and historically.

Course content: This course covers the period of the process of Turkish independence war and the period of the establishment of Turkish national state, and modernization process.

Turkish for International Students (course type: required; course code: TUR100)

Course objective: This course is designed exclusively for international students. The aim is to bring students to a level that will enable them to fulfil with basic communication level while they live in Cyprus.

Course content: This course offers basic levels include wide range of grammatical structures and vocabulary of Turkish language in order to build a level that they will enable to communicate efficiently. Students will be encouraged to read a variety of texts as well as chapters from textbooks.

YEAR 2

Data Structures and Algorithms (course type: required; course code: CS221)

Course objective: This course aims to offer understanding the algorithm and data structure used for some problem is much more important than knowing the exact code for it in some programming language.

Course content: This course comprises an introductory exploration into the design and implementation of Abstract Data Types (ADTs) along with the study of algorithm design and complexity analysis. Even though the discussions during lectures about ADTs are language independent, this course uses Python, a very high-level general programming language, to
implement these ideas using object-oriented programming. This class starts with a brief introduction to object-oriented programming.

Digital Circuits and Systems (course type: required; course code: ECE201)

Course objective: This course aims to offer understanding of basic EE abstractions on which analysis and design of electrical and electronic circuits and system. Also, the capability to use abstractions to analyze and design simple electronic circuits.

Course content: Digital Systems and Information, Combinational Logic Circuits, Combinational Logic Design, Arithmetic Functions and HDLs, Sequential Circuits, Selected Design Topics, Registers and Register Transfers, Memory Basics, Computer Design Basics, Instruction Set Architecture, RISC and CISC Processors, Input-Output and Communication, Memory Systems.

Probability and Statistics (course type: required; course code: MAT250)

Course objective: The aim of the course is to provide information to create, simulate, and analyze elementary probability models and to explain the limitations of the statistical inferences made therefrom.

Course content: Statistics, Data and Statistical Thinking, Methods for Describing Sets of Data, Probability, Random Variables and Probability Distributions, Inferences Based on Samples, Design of Experiments and Analysis of Variance, Categorical Data Analysis, Simple Linear Regression, Multiple Regression and Model Building, Methods for Quality Improvement: Statistical Process Control, Time Series, Nonparametric Statistics

Introduction to Management (course type: required; course code: MAN201)

Course objective: The aim of this course is to provide an introduction to the main aspects of management.

Introduction to Software Engineering (course type: required; course code: SE201)

Course objective: The objective of the course is to provide the student with necessary background of software engineering, principles and programming.

Computer Organisation (course type: required; course code: CE254)

Course objective: The main objective of this subject to understand the overall basic computer hardware structure, including the peripheral devices.

Database Systems (course type: required; course code: CS222)

Course objective: This course aims to cover fundamentals of database architecture, database management systems, and database systems. Principles and methodologies of database design, and techniques for database application development.

Introduction to Economics (course type: required; course code: ECO202)

Course objective: The aim of this course is to introduce key conceptual issues in economics. It analyses contemporary global business and finance topics for engineering.

Software Construction (course type: required; course code: SE202)

Course objective: This course aims to engage students with concepts related to the construction of software systems at scale, building on their understanding of the basic building blocks of data structures, algorithms, program structures, and computer structures.

Human Computer Interaction (course type: required; course code: SE234)

Course objective: The main objective is to perform analysis, establish requirements, design and evaluate interactive computer-based systems and products. The purpose of this course is to give the student basic knowledge about human-computer interaction. It will discuss how to understand human cognition and human perspective by working with computers.

YEAR 3

Operating Systems (course type: required; course code: CS323)

Course objective: This course intends to general understanding of structure of modern computers, purpose, structure and functions of operating systems, and illustration of key OS aspects by example.

Programming Languages I: (course type: required; course code: CS330)

Course objective: The general aim of this course is to provide an overview of the basic concepts that appear in modern programming languages, the principles that underlie the design of programming languages, and their interaction.

Management Information Systems (course type: required; course code: ISE303)

Course objective: This course aims to offer the roles played by information technology in today's business and define various technology architectures on which information systems are built. Define and analyze typical functional information systems and identify how they meet the needs of the firm to deliver efficiency and competitive advantage.

Software Design and Architecture (course type: required; course code: SE301)

Course objective: The main aim of this course is to familiarize with concepts and methods of software design and architecture, learn how to perform architectural design and OO design and basic project management tasks using examples, and experience design and architecture in a larger project.

Course content: An in-depth look at software design. Continuation of the study of design patterns, frameworks, and architectures. Survey of current middleware architectures. Design of distributed systems using middleware. Component based design. Measurement theory and appropriate use of metrics in design. Designing for qualities such as performance, safety, security, reusability, reliability, etc. Measuring internal qualities and complexity of software. Evaluation and evolution of designs. Basics of software evolution, reengineering, and reverse engineering.

Internet Programming (course type: required; course code: CS322)

Course objective: The main aim of this course is to be familiar with the main uses of the Internet as the primary modern technology for online communication, understand the generic principles of computer programming as applied to implementing basic web-based applications.

Course content: Internet concepts. HTML programming principles. Graphical User Interface design principles. Using ASP to develop internet applications. Uploading and testing internet applications.

Networking and Data Communications (course type: required; course code: ECE322)

Course objective: This course aims to provide the knowledge and skills required to design, model and effectively operate secure and dependable digital IP-based networks. It will provide opportunity to gain a sound understanding of the internet protocol suite that forms the core for current data networks. The fusion of the internet world and multimedia is also addressed, as well as wireless communications.

Course content: Introduction to Computer Networks and Data Communications, Fundamentals of Data and Signals, Conducted and Wireless Media, Making Connections, Making Connections Efficient, Errors, Error Detection and Error Control, Local Area...
Networks, Introduction to Metropolitan Area Networks and Wide Area Networks, The Internet, Voice and Data Delivery Networks, Network Security, Network Design and Management.

Technical Report Writing and Presentation (course type: required; course code: ENG302)

Course objective: This course aims to offer a critical technical writing and presentation skills for students for their future and professional lives.

Course content: To reinforces and consolidates the language and 4 skills that students have learned from earlier courses, as well as developing their level of knowledge, communicative capacity, and ability to analyse and reflect on language. Course on upper-intermediate AND ADVANCED levels include interesting and up-to-date topics, encouraging students to recognize the importance of acquiring a foreign language in a modern context; prepare them to for their future professional life.

Software Quality Assurance and Testing (course type: required; course code: SE302)

Course objective: The aim of this course is to inform the students about Understand the fundamental concepts and theory of Software testing and Software Quality Management. Implement process that ensures the Software is developed with good quality standards.

Software Requirements Analysis (course type: required; course code: SE304)

Course objective: The course aims to offer an examination of the historical development of Turkish political life.

Course content: Domain engineering. Techniques for discovering and eliciting requirements. Languages and models for representing requirements. Analysis and validation techniques, including need, goal, and use case analysis. Requirements in the context of system engineering. Specifying and measuring external qualities: performance, reliability, availability, safety, security, etc. Specifying and analyzing requirements for various types of

Summer Practice (course type: required; course code: SE300)

Course objective: This course provides real working life experience for students. Students will be able to apply their theoretical knowledge into practice.

Course content: A minimum of 40 working days for this practice is required in a manufacturing or service organization.

YEAR 4

Principles of Information Security (course type: required; course code: ISE403)

Course objective: The aim of this course is to provide an understanding of the key themes and principles of information security and be able to apply these principles in designing solutions to managing security risks effectively. Also, understand how to apply the principles of information security in a variety of contexts.

Software Project Management (course type: required; course code: SE401)

Course objective: The aim of this course is to deliver successful software projects that support organization’s strategic goals and match organizational needs to the most effective software development model, as well as develop the skills for tracking and controlling software deliverables.

Graduation Project I (course type: required; course code: SE491)

Course objective: This course aims that each student must choose an individual topic or theme on which he/she would like to do a scientific research project.

Course content: In this course every student will do a project in industrial engineering area to apply their technical knowledge and develop their professional abilities.

Graduation Project II (course type: required; course code: SE492)

Course objective: This course aims to critically evaluate and assess the student’s projects via oral presentations and written technical reports.

Course content: This course is the second part of the Graduation Project. In this course every student will do a project in industrial engineering area to apply their technical knowledge and develop their professional abilities.

Information Ethics (course type: required; course code: ISE402)

Course objective: This course aims to deal with different aspects of the International Political Economy, which is concerned with the interconnectedness of various areas such as economics, politics, history, sociology, etc.

Course content: In the first part of this course, we will introduce the fundamental paradigms of IPE by looking at the three different theoretical perspectives: mercantilism, liberalism, and structuralism. In the second part of the course, we will analyze structural connections of IPE, leading to sections that explore international trade, international finance, international institutions and global problems.

Object Oriented Analysis and Design (course type: elective; course code: SE402)

Course objective: The aim of the course is to teach methods and techniques for analysis and design of information systems based on an object-oriented approach. The course will,
furthermore, discuss a variety of perspectives of development of information systems in order explore the relationship between programming, data bases and software engineering.

Large Scale Software Development (course type: elective; course code: SE403)

Course objective: This course aims to deal with developing large-scale, event driven programs for engineering systems, demonstrate ability to work with frameworks, design and implement multi-threaded, runtime modular programs, and design and implement graphical user interfaces.

Software Patterns (course type: elective; course code: SE404)

Course objective: This course aims to teach students design patterns can speed up the development process by providing tested, proven development paradigms. Effective software design requires considering issues that may not become visible until later in the implementation.

Rapid Application Development (course type: elective; course code: SE405)

Course objective: This course aims to teach students Rapid application development (RAD) methods have long been used in the development of computer software.

Course content: Overview of the base language of a Rapid Application Development (RAD) tool. Object definitions, methods, properties and inheritance. Form design using visual components. Application development using the libraries of an industry standard RAD tool.

Distributed Software Engineering (course type: elective; course code: SE406)

Course objective: This course aims to provide a focus for research in software engineering for parallel and distributed software and systems.

Real-Time Embedded Systems (course type: elective; course code: SE407)

Course objective: This course aims to teach basic concepts of real-time systems, presents examples of real-time systems, covers real-time systems analysis and design, and gives an in-depth treatment of timing analysis and scheduling. The course is organized around the issue of real-time requirements and their impact on the architecture of a system.

Course content: Programming with Statecharts. Standard State Machine Implementations. QEP. Implementing State Machines with QEP. State Patterns. QF: A Minimal Event-Driven Embedded Framework. Design, Implementation and Porting QF.

Formal Methods in Software Engineering (course type: elective; course code: SE408)

Course objective: The purpose of formal methods is to enable the construction of large, highly reliable software. Their foundation is the precise specification of the run-time properties that a software system is expected to satisfy. The case for having precise specifications is fairly obvious: without a precise specification of the software system to be built it is not possible tell that the right system is being built. Formal methods are concerned with specifications that are precise for being stated in languages endowed with a formal syntax, semantics, and theory.

Analysis and Design of User Interfaces (course type: elective; course code: SE409)

Course objective: The main objective is to perform analysis, establish requirements, design and evaluate interactive computer-based systems and products. The purpose of this course is to give the student basic knowledge about how to understand human cognition and human perspective by working with computers.
SAMPLE COPY

NEAR EAST UNIVERSITY

DIPLOMA SUPPLEMENT
The Software Engineering Department is dedicated to providing a strong background in the theories and practices of Software Engineering, and to graduate engineers with up-to-date knowledge and information regarding science and engineering with an improved self-confidence and individual initiative. Students are educated to have scientific systematic approach in solving engineering problems, sound engineering base, life-long learning habits and research abilities.

4. Grading scheme, grade translation and grade distribution guidance:

For each course taken, the student is assigned one of the following grades by the course teacher.

For A.Sc., B.Sc. or B.A. degrees, students must obtain at least DD or S from each course and have a GPAs of not less than 2.00 out of 4.00 and have completed all the courses and summer practices in the program. For graduate degrees, students must obtain at least CC or S from each course for M.Sc. and M.A., at least BB for Ph.D. They also need to have a GPAs of 3.00 to graduate. The student’s standing is calculated in the form of a Graduate Point Average (GPA) and Cumulative Grade Point (CGPA) and is announced at the end of each semester by the Registrar’s Office. The total credit points for a course are obtained by multiplying the coefficient calculated in the form of a Graduate Point Average (GPA) and Cumulative Grade Point (CGPA) and is announced at the end of each semester by the Registrar’s Office. The total credit points for a course are obtained by multiplying the coefficient calculated in the form of a Graduate Point Average (GPA) and Cumulative Grade Point (CGPA) and is announced at the end of each semester by the Registrar’s Office. The total credit points for a course are obtained by multiplying the coefficient calculated in the form of a Graduate Point Average (GPA) and Cumulative Grade Point (CGPA) and is announced at the end of each semester by the Registrar’s Office. The total credit points for a course are obtained by multiplying the coefficient calculated in the form of a Graduate Point Average (GPA) and Cumulative Grade Point (CGPA) and is announced at the end of each semester by the Registrar’s Office. The total credit points for a course are obtained by multiplying the coefficient calculated in the form of a Graduate Point Average (GPA) and Cumulative Grade Point (CGPA) and is announced at the end of each semester by the Registrar’s Office. The total credit points for a course are obtained by multiplying the coefficient calculated in the form of a Graduate Point Average (GPA) and Cumulative Grade Point (CGPA) and is announced at the end of each semester by the Registrar’s Office. The total credit points for a course are obtained by multiplying the coefficient calculated in the form of a Graduate Point Average (GPA) and Cumulative Grade Point (CGPA) and is announced at the end of each semester by the Registrar’s Office. The total credit points for a course are obtained by multiplying the coefficient calculated in the form of a Graduate Point Average (GPA) and Cumulative Grade Point (CGPA) and is announced at the end of each semester by the Registrar’s Office.

<table>
<thead>
<tr>
<th>Percentage Course Coefficient</th>
<th>Grade</th>
<th>Percentage Course Coefficient</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-100</td>
<td>4</td>
<td>70-74</td>
<td>2</td>
</tr>
<tr>
<td>85-89</td>
<td>3.5</td>
<td>65-69</td>
<td>1.5</td>
</tr>
<tr>
<td>80-84</td>
<td>3</td>
<td>60-64</td>
<td>1</td>
</tr>
<tr>
<td>75-79</td>
<td>2.5</td>
<td>50-59</td>
<td>0.5</td>
</tr>
<tr>
<td>49 and below</td>
<td>0</td>
<td>FF</td>
<td></td>
</tr>
</tbody>
</table>

4.4. Programme details and the individual grades/marks obtained

Please see the next page.

5. INFORMATION ON THE FUNCTION OF THE QUALIFICATION

5.1. Access to further study

This degree enables the graduates to teach English in public and private institutions.

6. ADDITIONAL INFORMATION

6.1. Additional information

The department is accredited by YOK and YODAK for its quality standards.

6.2. Sources for further information

- Faculty web site: http://neu.edu.tr/tr/node/6204
- Department web site: http://neu.edu.tr/tr/node/546
- University web site: http://www.neu.edu.tr
- The Council of Higher Education of Turkey: http://www.yok.gov.tr
4.4. Program details and the individual grade/marks obtained:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>CR</th>
<th>ECTS</th>
<th>Status</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 101</td>
<td>Chemistry</td>
<td>4</td>
<td>6</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>ENG 101</td>
<td>English I</td>
<td>3</td>
<td>5</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>PHY 101</td>
<td>General Physics I</td>
<td>4</td>
<td>6</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>MAT 101</td>
<td>Calculus I</td>
<td>4</td>
<td>6</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>MAT 111</td>
<td>Linear Algebra</td>
<td>3</td>
<td>5</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>CS122</td>
<td>Programming & Problem Solv.</td>
<td>4</td>
<td>6</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>CS122</td>
<td>Object-Oriented Programming</td>
<td>3</td>
<td>5</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>ENG 102</td>
<td>English II</td>
<td>3</td>
<td>5</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>MAT 102</td>
<td>Calculus II</td>
<td>3</td>
<td>4</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>MAT 112</td>
<td>Discrete Mathematics</td>
<td>4</td>
<td>6</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>PHY 102</td>
<td>General Physics II</td>
<td>4</td>
<td>6</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>AFI 101</td>
<td>Atatürk like ve İnkılap Tarihi</td>
<td>0</td>
<td>3</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>TUR 100</td>
<td>Turkish for International Students</td>
<td>0</td>
<td>1</td>
<td>Compulsory</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>CR</th>
<th>ECTS</th>
<th>Status</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS221</td>
<td>Data Structures and Algorithms</td>
<td>3</td>
<td>5</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>ECE 222</td>
<td>Digital Circuits and Systems</td>
<td>3</td>
<td>5</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>MAN 201</td>
<td>Introduction to Management</td>
<td>3</td>
<td>5</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>MATH 206</td>
<td>Probability and Statistics</td>
<td>4</td>
<td>6</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>SE 201</td>
<td>Principles of Software Eng.</td>
<td>3</td>
<td>5</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>CS 224</td>
<td>Computer Organisation</td>
<td>3</td>
<td>5</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>CS 222</td>
<td>Database Systems</td>
<td>3</td>
<td>5</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>ECO 202</td>
<td>Introduction to Economics</td>
<td>3</td>
<td>5</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>SE 234</td>
<td>Human-Computer Interaction</td>
<td>3</td>
<td>5</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>SE 235</td>
<td>Internet Programming</td>
<td>3</td>
<td>5</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>ECE 322</td>
<td>Networking and Data Com.</td>
<td>3</td>
<td>5</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>ENG 302</td>
<td>Tech. Report Writing and Pros.</td>
<td>3</td>
<td>5</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>ENG 302</td>
<td>Software Quality As. And T.</td>
<td>4</td>
<td>6</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>SE 304</td>
<td>Software Requirement Analysis</td>
<td>3</td>
<td>5</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>ISE 403</td>
<td>Information Ethics</td>
<td>3</td>
<td>5</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>ISE 402</td>
<td>Senior Project II</td>
<td>4</td>
<td>12</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>ISE 403</td>
<td>Technical Elective I</td>
<td>3</td>
<td>5</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>TE</td>
<td>Technical Elective I</td>
<td>3</td>
<td>5</td>
<td>Compulsory</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL LOCAL CREDITS: 139 - ECTS: 239 - CGPA:

7. CERTIFICATION OF THE SUPPLEMENT

7.1. Date

7.2. Name and Signature

7.3. Capacity

7.4. Official stamp or seal
8. INFORMATION ON THE NATIONAL HIGHER EDUCATION SYSTEM

The basic structure of the North Cyprus Education System consists of four main stages as pre-school education, primary education, secondary education and higher education.

Pre-school education consists of non-compulsory programs whereas primary education is a compulsory 8 year program for all children beginning from the age of 6. The secondary education system includes “General High Schools” and “Vocational and Technical High Schools”.

The Higher Education System in North Cyprus is regulated by the Higher Education Planning, Evaluation, Accreditation and Coordination Council (Yükseköğretim Planlama, Denetleme, Akreditasyon ve Koordinasyon Kurulu – YÖDAK). Established in 1988, the Council regulates the activities of higher education institutions with respect to research, governing, planning and organization. The higher education institutions are established within the framework of the Higher Education Law. All programs of higher education should be accredited by YÖDAK.

Higher education in North Cyprus comprises all post-secondary higher education programmes, consisting of short, first, second, and third cycle degrees in terms of terminology of the Bologna Process. The structure of North Cyprus higher education degrees is based on a two-tier system, except for dentistry, pharmacy, medicine and veterinary medicine programmes which have a one-tier system. The duration of these one-tier programmes is five years except for medicine which lasts six years. The qualifications in these one-tier programmes are equivalent to the first cycle (bachelor degree) plus secondary cycle (master degree) degree. Undergraduate level of study consists of short cycle (associate degree) - (ön lisans derecesi) and first cycle (bachelor degree) - (lisans derecesi) degrees which are awarded after the successful completion of full-time two-year and four-year study programmes, respectively.

Graduate level of study consists of second cycle (master degree) – (yüksek lisans derecesi) and third cycle (doctorate) – (doktora derecesi) degree programmes. Second cycle is divided into two sub-types named as master without thesis and master with thesis. Master programmes without thesis consists of courses and semester project. The master programmes with a thesis consist of courses, a seminar, and a thesis. Third cycle (doctorate) degree programmes consist of completion of courses, passing a qualifying examination and a doctoral thesis. Specializations in dentistry, accepted as equivalent to third cycle programmes are carried out within the faculties of dentistry, Specialistization in medicine, accepted as equivalent to third cycle programmes are carried out within the faculties of medicine, and university hospitals and training hospitals operated by the Ministry of Health.

Universities consist of graduate schools (institutes) offering second cycle (master degree) and third cycle (doctorate) degree programmes, faculties offering first cycle (bachelor degree) programmes, four-year higher schools offering first cycle (bachelor degree) degree programmes with a vocational emphasis and two-year vocational schools offering short cycle (associate degree) degree programmes of strictly vocational nature.

Second cycle degree holders may apply to third cycle programmes if their performance at the first cycle degree level is exceptionally high and their national central Graduate Education Entrance Examination (ALES) score is also high and their application is approved. The doctoral degree is conferred subject to at least one publication in a cited and refereed journal.