Course Unit Title	Instrumental Analysis		
Course Unit Code	BME401		
Type of Course Unit	Compulsory		
Level of Course Unit			
National Credits	4		
Number of ECTS Credits Allocated	6		
Theoretical (hour/week)	3		
Practice (hour/week)	-		
Laboratory (hour/week)	2		
Year of Study	1		
Semester when the course unit is delivered	2		
Course Coordinator	-		
Name of Lecturer (s)			
Name of Assistant (s)	-		
Mode of Delivery	Face to Face.		
Language of Instruction	English		
Prerequisites	-		
Recommended Optional Programme			
Components			
Course description:			

This course is designed to give students practical experience using modern analytical instrumentation and to provide students with the background theory and principles of operation.

Objectives of the Course:

• The objective of this course is to provide a fundamental understanding of various analysis tools and instruments in biomedical applications.

Lea	Learning Outcomes					
At the end of the course the student should be able to A						
1	The chemical and physical principles exploited during the measurement.					
2	How the instrument actually makes the measurement.					
3	Some of the technique used to increase the accuracy, precision and	1, 2, 3,4,5				
	sensitivity.					
4	Learn the basic principles and differences of various temperature sensors.	1,2,3,4,5				
5	Develop good manipulation skills					
6	Students will be able to understand and operate a wide range of					
	instruments based on the knowledge.					
	Following new innovations	4, 5				
Ass	Assessment Methods: 1. Written Exam, 2. Assignment, 3. Project/Report, 4. Presentation, 5.					
Lab	Lab. Work					
Cou	irse's Contribution to Program					
		CL				
1	1 Apply knowledge of mathematics, natural science with relevant to life science					
	and multidisciplinary context of engineering science.					
2 Analyze, design and conduct experiments, as well as to analyze and interpret		et 5				
	data.	5				
3	Design a system, component or process to meet desired needs within realisti	c 5				
	constraints such as economic, environmental, social, political, ethical, healt	h J				

and	and safety, manufacturability and sustainability.				
4 Fu	4 Function on multidisciplinary teams.				
5 Co	5 Control in design work, by using simulation, modelling and tests and				
int	egration in	a problem solving oriented way.		5	
6 Di	splay an ur	iderstanding of professional and ethical responsibility.		5	
7 Co	7 Communicate effectively aware of the non-technical effects of engineering.				
8 Sea	8 Search technical literature and other information sources.				
9 Re	cognize of	the need for, and an ability to engage in life-long learning.		5	
10 Ex	hibit a kno	wledge of contemporary issues.		5	
11 Us	e the tec	hniques, skills and modern engineering tools necessary f	for	5	
eng	gineering p	practice to develop marketable products for the global market.		5	
CL: Co	ntribution	Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High	gh)		
Course	e Contents				
Week	Chapter	Topics	A	Assessment	
1		Inroduction to Instrumental analysis			
2		Introduction to spectroscopy			
3		UV_Visible Spectroscopy			
4		Luminescence Spectroscopy	Assignment 1		
5		Infrared Spectroscopy			
6		Introduction to Atomic Spectroscopy	to Atomic Spectroscopy Assign		
7		Atomic Emmision/Absorption Spectroscopy			
8		Midterm	Mi	dterm Exam	
9		Potentiometry/Voltammetry			
10		Continuous Flow and Flow Injection Analysis			
11		Gas Chromotography			
12		High Performance Liquid Chromatography	As	signment 3	
13		Electrophoresis			
14		Mass Spectrometry			
15		Revision			
16		FINAL EXAM	Fir	nal Exam.	

Recommended Sources

Textbook:

Holler, Skoog, Crouch, Principles of Instrumental Analysis, 6th Edition, ISBN-13: 978-0-495-01201-6, 2007, Cengage Learning.

Lab Manual

Supplementary Course Material

• Related Research Papers

Assessment		
Attendance	5%	Less than 25% class attendance results in NA grade
Assignment	5%	
Midterm Exam	30%	Written Exam
Quiz	15%	Written Exam
Final Exam	45%	Written Exam
Total	100%	

Assessment Criteria

Final grades are determined according to the Near East University Academic Regulations for Undergraduate Studies

Course Policies

- 1. Attendance to the course is mandatory.
- 2. Late assignments will not be accepted unless an agreement is reached with the lecturer.
- 3. Students may use calculators during the exam.
- 4. Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Near East University General Student Discipline Regulations

ECTS allocated based on Student Workload

Activities	Number	Duration (hour)	Total Workload(hour)
Course duration in class (including Exam weeks)	16	4	64
Labs and Tutorials	20	1	20
Assignment	2	4	8
Project/Presentation/Report	3	10	30
E-learning activities	-	-	-
Quizzes	-	-	-
Midterm Examination	-	-	-
Final Examination	1	2	2
Self Study	15	4	100
Total Workload	162		
Total Workload/30(h)	5.5		
ECTS Credit of the Course	6		