Course Unit Title	Biomedical Instrumentation II
Course Unit Code	BME312
Type of Course Unit	Compulsory
Level of Course Unit	3 rd year BSc program
National Credits	4
Number of ECTS Credits Allocated	6
Theoretical (hour/week)	4
Practice (hour/week)	-
Laboratory (hour/week)	-
Year of Study	3
Semester when the course unit is delivered	6
Course Coordinator	Ali Işın
Name of Lecturer (s)	Ali Işın
Name of Assistant (s)	-
Mode of Delivery	Face to Face.
Language of Instruction	English
Prerequisites	BME311, (BIOMEDICAL
	INSTRUMENTATION I)
Recommended Optional Programme	
Components	

Course description:

This course is designed for biomedical engineering undergraduate students. The purpose of the course is to provide biomedical instrumentation background on technical aspects. Biomedical measurement systems are introduced in detail. Students are provided with overviews of the major physical techniques that engineers have used to explore in biomedical engineering levels.

Objectives of the Course:

- With widespread use and requirements of medical instruments, this course gives knowledge of the principle of operation and design of biomedical instruments.
- It attempts to render a broad and modern account of biomedical instruments.
- It gives the introductory idea about human physiology system which is very important with respect to design consideration.

Lea	rning Outcomes	
At th	ne end of the course the student should be able to	Assessment
1	Develop a thorough understanding on basics of biomedical amplifiers	1
2	Develop a thorough understanding on basics of biomedical measurements	1, 2
3	Develop a thorough understanding on principles of medical	1, 2
	instrumentations	
4	Develop a thorough understanding on clinical applications of medical	1, 2
	instrumentation systems.	
Ass	essment Methods: 1. Written Exam, 2. Assignment, 3. Project/Report, 4. Pres	entation, 5.
Lab.	Work	
Cou	rse's Contribution to Program	
		CL
1	Apply knowledge of mathematics, natural science with relevant to life scienc	e
	and multidisciplinary context of engineering science.	
_		

2 Analyse, design and conduct experiments, as well as to analyse and interpret

	data.			
3	3 Design a system, component or process to meet desired needs within realistic			tic
	constraints such as economic, environmental, social, political, ethical, health			
4	and safe	ty, m	anufacturability and sustainability.	
4	Function	$\frac{1 \text{ on } r}{\frac{1}{2}}$	nultidisciplinary teams.	
3	integrati	on in	a problem solving oriented way.	ind
6	Display	an ur	inderstanding of professional and ethical responsibility.	
7	Commu	nicate	e effectively aware of the non-technical effects of engineering.	
8	Search to	echni	ical literature and other information sources.	
9	Recogni	ze of	the need for, and an ability to engage in life-long learning.	
10	Exhibit a	a kno	wledge of contemporary issues.	
11	Use the	tecl	hniques, skills and modern engineering tools necessary	for
CI.	Contribu	ing p	bractice to develop marketable products for the global market.	~ h)
	Contribu	tents	Level (1. very Low, 2. Low, 5. Moderate, 4. High, 5. very Hi	gn)
Wa	ak Cha	ntor	Topics	Assessment
1		pter	Introduction	Assessment
1				
2			Cardiac Pacemakers	
3			Implantable Defibrillators	
4			Blood Pumps	
5			Measurement of Flow and Volume of Blood	
6			Photoplethysmogram	
7			Therapeutic and Prosthetic Devices	
8			Midterm	Midterm
9			Clinical Laboratory Instrumentation	
10)		Intensive Care and Coronary Care Units	
11			Electricosurgical Devices	
12			Implantable Stimulators for Neuromuscular Control	
13			EMG & EEG Systems	
14			Revision Week	
15				Final Exam.

Recommended Sources

Textbook:

20. J.J. Carr, J.M. Brown: Introduction to Biomedical Equipment Technology, Prentice Hall, 2nd Ed. 2001.

21 J.G Webster: Medical Instrumentation: Application and design, Wiley, 2010.

Assessment

Attendance	5%	
Lab	20%	
Midterm Exam	30%	Written Exam
Final Exam	45%	Written Exam
Total	100%	

Assessment Criteria

Final grades are determined according to the Near East University Academic Regulations for Undergraduate Studies

Course Policies

- 1. Attendance to the course is mandatory.
- 2. Late assignments will not be accepted unless an agreement is reached with the lecturer.
- 3. Students may use calculators during the exam.
- 4. Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Near East University General Student Discipline Regulations

ECTS allocated based on Student Workload						
Activities	Number	Duration (hour)	Total Workload(hour)			
Course duration in class (including Exam weeks)	15	4	60			
Labs and Tutorials	-	-	-			
Assignment	11	2	22			
Project/Presentation/Report	-	-	-			
E-learning activities	5	2	10			
Quizzes	-	-	-			
Midterm Examination	1	2	2			
Final Examination	1	2	2			
Self-Study	15	5	75			
Total Workload	171					
Total Workload/30(h)	5.71					
ECTS Credit of the Course	6					