Course Unit Title	Biomedical Electronics
Course Unit Code	BME310
Type of Course Unit	Compulsory
Level of Course Unit	3 rd year BSc program
National Credits	3
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	4
Practice (hour/week)	-
Laboratory (hour/week)	2
Year of Study	3
Semester when the course unit is delivered	5
Course Coordinator	Fatih Veysel Nurçin
Name of Lecturer (s)	Fatih Veysel Nurçin
Name of Assistant (s)	Fatma Zor / Niyazi Şentürk
Mode of Delivery	Face to Face.
Language of Instruction	English
Prerequisites	EE208
Recommended Optional Programme	
Components	

Course description:

This course is designed for biomedical engineering undergraduate students. The purpose of this course is provide biomedical instrumentation background on technical aspects.

Objectives of the Course:

- The goal of the course is to provide students with an in-depth knowledge and understanding of the principles of electronic circuits with a particular emphasis on solving design problems involving commonly encountered in biomedical electronics.
- The specific course objectives are to review the fundamentals of electronic circuit design, to expose to students to problem-oriented design, to expose the students to problems particular to biomedical electronics circuits, to integrate the physiological concepts with electronic design and to prepare the students for solving design problems in any area of biomedical engineering.

Learning Outcomes				
At th	Assessment			
1	Develop a thorough understanding on basics of some electrochemical properties of human body	1,2		
2	Develop a thorough understanding on basics of some biomedical measurements	1, 4		
3	Develop a thorough understanding on basics of some medical electronics system logic	1, 2, 3, 4		
4	Develop a thorough understanding on basics of clinical applications of some medical electronic devices	1, 2, 3		
Ass	Assessment Methods: 1. Written Exam, 2. Assignment, 3. Project/Report, 4. Lab. Work			
Course's Contribution to Program				
		CL		
1	Apply knowledge of mathematics, natural science with relevant to life scienc	e 4		

	1	inlinent context of an air			
		iplinary context of engineering science.	mat		
	Analyse, design and conduct experiments, as well as to analyse and interpret data.				
		tem, component or process to meet desired needs within realis			
	constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability and sustainability.				
		nultidisciplinary teams.		3	
5 Co	Control in design work, by using simulation, modelling and tests and integration in a problem solving oriented way.				
		iderstanding of professional and ethical responsibility.		3	
		e effectively aware of the non-technical effects of engineering.		2	
		cal literature and other information sources.		1	
		the need for, and an ability to engage in life-long learning.		1	
		wledge of contemporary issues.		2	
		hniques, skills and modern engineering tools necessary	for	2	
eng	gineering p	practice to develop marketable products for the global market.		4	
		Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very Hi	igh)		
	<u>Contents</u>		1		
Week	Chapter	Topics	1	Assessment	
1		Semiconductors			
2		Clippers, Clampers, Rectifiers		st Homework Assigned	
3		Applications of Semiconductor Diodes in the field of Biomedical Devices			
4		Bipolar Junction Transistors, Biasing of Transistors	1 st du	^t Homework	
5		CE, CB, CC Configurations, Field Effect Transistors	2 ⁿ	^{ad} Homework ssigned	
6		Applications of BJT and FET in the field of Biomedical Devices		nd Homework	
7				lidterm Exam	
8		Operational amplifiers		d Homework ssigned	
9		Design and Applications of various types OP-AMP	110	5151104	
10		Application of Operational Amplifiers in the field of Biomedical Devices			
11		Combinational Amplifier Circuits	3 ^{rc} du	Homework	
12		Combinational Amplifier Circuits	4^{th}	Homework ssigned	
13		BJT, FET, MOS networks and low noise amplifier circuits which used at the input of EEG, ECG, EMG instruments in the medical field applications		,5151104	
14		Revision	4 th du	Homework	
				Final Exam.	

Textbook:

- Robert L. Boylestad & Louis Nashelsky "Electronic Devices and Circuit Theory", 11th Edition, ISBN: 978-0132622264
- C. Raja Rao, Sujoy K. Ghua, Principles of Medical Electronics and Biomedical Instrumentation
- Joseph Dubovy, Biomedical Electronics

Assessment		
Attendance	5%	Less than 25% class attendance results in NA grade
Project	5%	
Midterm Exam	25%	Written Exam
Lab works	15%	
Homeworks	10%	
Final Exam	40%	Written Exam
Total	100%	

Assessment Criteria

Final grades are determined according to the Near East University Academic Regulations for Undergraduate Studies

Course Policies

- 1. Attendance to the course is mandatory.
- 2. Late assignments will not be accepted unless an agreement is reached with the lecturer.
- 3. Students may use calculators during the exam.
- 4. Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Near East University General Student Discipline Regulations

ECTS allocated based on Student Workload

Activities	Number	Duration (hour)	Total Workload(hour)
Course duration in class (including Exam weeks)	15	4	60
Labs and Tutorials	8	3	24
Assignment	4	2	8
Project/Presentation/Report	-	-	-
E-learning activities	-	-	-
Quizzes	-	-	-
Midterm Examination	1	6	6
Final Examination	1	12	12
Self-Study	15	4	60
Total Workload			180

Total Workload/30(h)	6.00
ECTS Credit of the Course	6.00