Course Unit Title	Biomedical Sensors
Course Unit Code	BME301
Type of Course Unit	Compulsory
Level of Course Unit	3 rd year BSc program
National Credits	4
Number of ECTS Credits Allocated	6
Theoretical (hour/week)	4
Practice (hour/week)	-
Laboratory (hour/week)	-
Year of Study	3
Semester when the course unit is delivered	5
Course Coordinator	Ali Işın
Name of Lecturer (s)	Ali Işın
Name of Assistant (s)	Niyazi Şentürk
Mode of Delivery	Face to Face.
Language of Instruction	English
Prerequisites	EE208 Basic Electronics)
Recommended Optional Programme	
Components	

Course description:

The basis of biosensor design, analysis and selection of physical, optical, electrical, mechanical, thermal transduction mechanisms. The properties of transducers, dynamic linearity, hysteresis and frequency range. Biological elements, immobilization of biological components. Medical, biological and chemical sensors and transducers based on electrochemistry, optics, and solid-state devices.

Objectives of the Course:

- Introducing first, second and higher order differential equations, and the methods of solving these equations.
- Emphasizing the important of differential equations and its engineering application.
- Introducing the Laplace transform and its applications in solving differential equations and other engineering applications.
- Introducing the series method in solving differential equations.

Learning Outcomes

At th	ne end of the course the student should be able to	Assessment		
1	Develop a thorough understanding on basics of biomedical sensors and	1		
	biomedical transducers			
2	Develop a thorough understanding on basics of data acquisition	1, 2		
3	Develop a thorough understanding on basics of sensor characteristics and	1, 2		
	sensor design.			
4	Identify the different types of biopotential sensors.	1, 2		
5	Identify the different types of resistive, reactance variation and	1,2,3		
	selfgenerating sensors.			
6	Identify the different types of optical sensors	1,2,3		
7	Discuss the operating principle, calibration, parameters and applications			
	of all types of biomedical sensors.	1,2,3,4		

Assessment Methods: 1. Written Exam, 2. Assignment, 3. Project/Report, 4. Presentation, 5. Lab. Work

	<u>irse's Contril</u>	oution to Program		
			CL	
1	Apply knowledge of mathematics, natural science with relevant to life science and multidisciplinary context of engineering science.			
2	Analyze, design and conduct experiments, as well as to analyze and interpret data.			
3		Design a system, component or process to meet desired needs within realistic		
2	constraints su	ach as economic, environmental, social, political, ethical, healt anufacturability and sustainability.		
4		nultidisciplinary teams.	3	
5	Control in c	design work, by using simulation, modelling and tests an		
6		a problem solving oriented way.	2	
6 7		nderstanding of professional and ethical responsibility.	2	
/ 8		e effectively aware of the non-technical effects of engineering. cal literature and other information sources.	2	
<u>ہ</u> 9		the need for, and an ability to engage in life-long learning.	3	
		wledge of contemporary issues.	2	
11		hniques, skills and modern engineering tools necessary for)r	
	engineering p	practice to develop marketable products for the global market.	4	
		Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High	h)	
Coι	irse Contents			
We	ek Chapter	Topics	Assessment	
1				
1		Introduction		
2		Introduction Cardiac Pacemakers		
2		Cardiac Pacemakers		
2		Cardiac PacemakersImplantable DefibrillatorsBlood PumbsMeasurement of Flow and Volume of Blood		
2 3 4		Cardiac PacemakersImplantable DefibrillatorsBlood Pumbs		
2 3 4 5		Cardiac PacemakersImplantable DefibrillatorsBlood PumbsMeasurement of Flow and Volume of Blood		
2 3 4 5 6		Cardiac PacemakersImplantable DefibrillatorsBlood PumbsMeasurement of Flow and Volume of BloodPhotoplethysmogramTherapeutic and Prosthetic Devices	Midterm	
2 3 4 5 6 7		Cardiac PacemakersImplantable DefibrillatorsBlood PumbsMeasurement of Flow and Volume of BloodPhotoplethysmogramTherapeutic and Prosthetic Devices	Midterm	
2 3 4 5 6 7 8		Cardiac PacemakersImplantable DefibrillatorsBlood PumbsMeasurement of Flow and Volume of BloodPhotoplethysmogramTherapeutic and Prosthetic Devices	Midterm	
2 3 4 5 6 7 8 9		Cardiac PacemakersImplantable DefibrillatorsBlood PumbsMeasurement of Flow and Volume of BloodPhotoplethysmogramTherapeutic and Prosthetic DevicesClinical Laboratory Instrumentaion	Midterm	
2 3 4 5 6 7 7 8 8 9 9 1((Cardiac PacemakersImplantable DefibrillatorsBlood PumbsMeasurement of Flow and Volume of BloodPhotoplethysmogramTherapeutic and Prosthetic DevicesClinical Laboratory InstrumentaionIntensive Care and Coronary Care Units	Midterm	
2 3 4 5 6 6 7 7 8 8 9 9 10 11		Cardiac PacemakersImplantable DefibrillatorsBlood PumbsMeasurement of Flow and Volume of BloodPhotoplethysmogramTherapeutic and Prosthetic DevicesClinical Laboratory InstrumentaionIntensive Care and Coronary Care UnitsElectrosurgical Devices	Midterm	
2 3 4 5 6 6 7 7 8 8 9 9 10 11 11 12		Cardiac PacemakersImplantable DefibrillatorsBlood PumbsMeasurement of Flow and Volume of BloodPhotoplethysmogramTherapeutic and Prosthetic DevicesClinical Laboratory InstrumentaionIntensive Care and Coronary Care UnitsElectrosurgical DevicesImplantable Stimulators for Neuromuscular Control	Midterm	

Textbook:

20. J.J. Carr, J.M. Brown: Introduction to Biomedical Equipment Technology, Prentice Hall, 2nd Ed. 2001.

21 J.G Webster: Medical Instrumentation: Application and design, Wiley, 2010.

Assessment			
Attendance	5%		
Lab	20%		
Midterm Exam	30%	Written Exam	
Final Exam	45%	Written Exam	
Total	100%		

Assessment Criteria

Final grades are determined according to the Near East University Academic Regulations for Undergraduate Studies

Course Policies

- 1. Attendance to the course is mandatory.
- 2. Late assignments will not be accepted unless an agreement is reached with the lecturer.
- 3. Students may use calculators during the exam.
- 4. Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Near East University General Student Discipline Regulations

ECTS allocated based on Student Workload					
Activities	Number	Duration (hour)	Total Workload(hour)		
Course duration in class (including Exam weeks)	15	4	60		
Labs and Tutorials	-	-	-		
Assignment	11	2	22		
Project/Presentation/Report	-	-	-		
E-learning activities	5	2	10		
Quizzes	-	-	-		
Midterm Examination	1	2	2		
Final Examination	1	2	2		
Self Study	15	4	60		
Total Workload	156				
Total Workload/30(h)	5.52				
ECTS Credit of the Course	6				