Course Unit Title	Biochemistry
Course Unit Code	BME102
Type of Course Unit	Compulsory
Level of Course Unit	1 st year BSc program
National Credits	4
Number of ECTS Credits Allocated	6
Theoretical (hour/week)	4
Practice (hour/week)	-
Laboratory (hour/week)	-
Year of Study	1
Semester when the course unit is delivered	2
Course Coordinator	Assoc. Prof. Dr. Terin Adalı
Name of Lecturer (s)	Assoc. Prof. Dr. Terin Adalı
Name of Assistant (s)	Fatma Zor
Mode of Delivery	Face to Face.
Language of Instruction	English
Prerequisites	CHEM104(Chemistry For Biological Sciences
	And Engineering)
Recommended Optional Programme	
Components	

Course description:

This course is designed for engineering students. Emphasis is placed on the relationship between molecular architecture and the functional properties of biomolecules, and the thermodynamic, unceasing, and self-regulating nature of living processes. Students are also provided with overviews of the major physical and chemical techniques that engineers have used to explore life at the molecular level.

Objectives of the Course:

- Be able to know the basic laws of thermodynamics.
- To apply those laws for solving problems.
- To be able to us his/her knowledge in the fields of other sciences and/or engineering.
- Understanding how biochemistry approach and solve problems in life sciences.

Learning Outcomes

Lua	ining Outcomes	
At th	ne end of the course the student should be able to	Assessment
1	Develop a thorough understanding on life, amino acids, nucleic acids, gene expression, proteins, biomolecules, and mechanism of enzyme action.	1,2
2	Develop a thorough understanding ability to metabolism such as glycolysis, signal transaction, citric acid cycle, lipid metabolism and nucleotide metabolism	1, 2
3		
4		
Ass	essment Methods: 1 Written Exam 2 Assignment 3 Project/Report 4 Pre	esentation 5

Assessment Methods: 1. Written Exam, 2. Assignment, 3. Project/Report, 4. Presentation, 5. Lab. Work

Course's Contribution to Program

		CL
1	Apply knowledge of mathematics, natural science with relevant to life science	5
	and multidisciplinary context of engineering science.	5

	Analyse, design and conduct experiments, as well as to analyse and interpret data.				
3	Design a system, component or process to meet desired needs within realistic				
	constraints such as economic, environmental, social, political, ethical, health				
		anufacturability and sustainability.	-		
		nultidisciplinary teams.		4	
		design work, by using simulation, modelling and tests an	nd		
		a problem solving oriented way.		4	
		nderstanding of professional and ethical responsibility.		4	
		e effectively aware of the non-technical effects of engineering.		1	
		ical literature and other information sources.		2	
9	Recognize of	the need for, and an ability to engage in life-long learning.		3	
		wledge of contemporary issues.		2	
		hniques, skills and modern engineering tools necessary f	or	2	
		practice to develop marketable products for the global market.		2	
		Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very Hig	gh)		
	rse Contents				
Wee			A	Assessment	
1		Introduction (Life)	As	signment 1	
2		Thermodynamic Principles	As	signment 2	
3		Biomolecules (Amino acids, Nucleic acids)	As	ssignment 3	
4		Gene expression and Recombinant DNA Technology	As	Assignment 4	
5		Covalent structures of Proteins and Nucleic Acids	Assignment 5		
6		Hemoglobin	As	ssignment 6	
7		Sugars and Polysaccharides Revision			
8			Mi	dterm Exam	
9		Lipids and Membranes			
10		Mechanisms of Enzyme action	As	signment 7	
11		Metabolism(Glycolysis, Glycogen Metabolism)			
12		Signal Transduction, Citric Acid Cycle	As	signment 8	
13		Other pathways of Carbohydrate metabolism	As	signment 9	
14		Lipid Metabolism, Amino acid metabolism	As	signment 10	
14					
14		Energy and nucleotide metabolism & Revision	As	signment 11	

Recommended Sources

Textbook:

Donald Voet/Judith G. Voet, Charlotte W. Pratt, Principles of Biochemistry, Third Edition, ISBN 13: 978-0470-23396-2, 2008, Wiley Publication

Lab Manual

Supplementary Course Material

Lecture notes		
Assessment		
Attendance	5%	Less than 25% class attendance results in NA grade
Assignment	5%	
Midterm Exam	30%	Written Exam
Quiz	15%	Written Exam
Final Exam	45%	Written Exam
Total	100%	

Assessment Criteria

Final grades are determined according to the Near East University Academic Regulations for Undergraduate Studies

Course Policies

- 1. Attendance to the course is mandatory.
- 2. Late assignments will not be accepted unless an agreement is reached with the lecturer.
- 3. Students may use calculators during the exam.
- 4. Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Near East University General Student Discipline Regulations

ECTS allocated based on Student Workload					
Activities	Number	Duration (hour)	Total Workload(hour)		
Course duration in class (including Exam weeks)	16	4	64		
Labs and Tutorials	20	1	20		
Assignment	2	4	8		
Project/Presentation/Report	-	-	-		
E-learning activities	-	-	-		
Quizzes	-	-	-		
Midterm Examination	1	2	2		
Final Examination	1	2	2		
Self-Study	15	4	60		
Total Workload	162				
Total Workload/30(h)	5.48				
ECTS Credit of the Course	6				